

Cluster Binding

Modulation of Benzene or Naphthalene Binding to Palladium Cluster Sites by the Backside-Ligand Effect**

Yuki Ishikawa, Seita Kimura, Kohei Takase, Koji Yamamoto, Yuki Kurashige, Takeshi Yanai, and Tetsuro Murahashi*

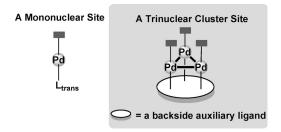
Abstract: The backside-ligand modulation strategy to enhance the substrate binding property of Pd clusters is reported. The benzene or naphthalene binding ability of Pd_3 or Pd_4 clusters is enhanced significantly by the backside cyclooctatetraene ligand, leading to the formation of the first solution-stable benzene- or naphthalene Pd clusters. The present results imply that the ligand design of the metal clusters, especially for the backside ligand of the metal cluster site, is crucial to acquire a desired reactivity of metal clusters.

Much attention has been focused on the roles of metal clusters in catalysis. It is of particular interest to explore the substrate binding and activation modes at the bridging coordination sites of metal clusters, as multiple metal atoms of a metal cluster site may facilitate some elementary reactions in catalytic cycles, or bring new modes of substrate binding and transformation.^[1] Despite the importance of palladium in catalysis, however, the way that Pd clusters bind substrates at their μ_n -bridging coordination sites $(n \ge 3)$ has not been extensively investigated and thus poorly characterized.^[2] This is mainly due to the difficulty to generate reactive molecular Pd clusters in homogeneous systems.[3] To overcome this problem, it is necessary to develop a ligand system which not only supports a Pd cluster core, but also bring a suitable environment for substrate binding at a Pd cluster site through electronic and/or steric effects. In designing the

[*] Y. Ishikawa, S. Kimura, K. Yamamoto, Prof. T. Murahashi Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8787 (Japan) E-mail: mura@ims.ac.jp

Y. Ishikawa, K. Yamamoto, Prof. T. Murahashi Department of Structural Molecular Science The Graduate University for Advanced Studies Myodaiji, Okazaki, Aichi, 444-8787 (Japan)

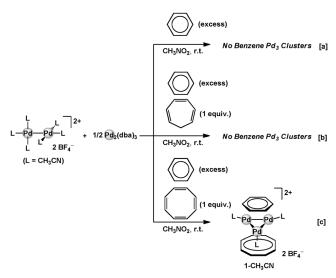
S. Kimura, K. Takase
Department of Applied Chemistry
Graduate School of Engineering, Osaka University
Suita, Osaka, 565-0871 (Japan)


Dr. Y. Kurashige, Prof. T. Yanai Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Department of Functional Molecular Science The Graduate University for Advanced Studies Myodaiji, Okazaki, Aichi 444-8585 (Japan)

[**] This work was supported by MEXT Japan, JST, and Tokuyama Science Foundation. We thank Prof. H. Kurosawa and Prof. S. Ogoshi for discussion.

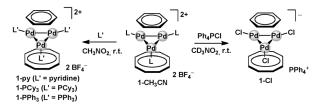
Supporting information for this article is available on the WWW under $\frac{1}{2} \frac{1}{2} \frac{1}{2$

ligand systems for reactive Pd clusters, we focused on the roles of the backside auxiliary ligand, as the property of a metal cluster site may be largely affected by electronic effects of the backside ligand, in view of the well-established *trans* influence and *trans* effect in the mononuclear metal systems (Scheme 1).^[4] Herein, we report that the backside



Scheme 1. The *trans* ligand of a mononuclear Pd site and the backside ligand of a trinuclear Pd cluster site.

carbocyclic ligands have a large effect on the substrate binding property at a Pd_3 cluster site, through demonstration of the significantly enhanced benzene binding ability of a Pd_3 cluster as compared to known Pd complexes. Furthermore, it was also confirmed that the backside-ligand-modulation strategy can be applied to the naphthalene binding at a $\mu_4\text{-}Pd_4$ cluster site.


We chose benzene as the target substrate in examining the backside-ligand effect on the substrate binding at a µ₃-Pd₃ cluster site, as benzene is one of the weakest coordinating substrates in organopalladium chemistry. In fact, mononuclear Pd complexes that bind benzene stably in solution have not been reported.^[5,6] The lack of solution-stable benzene-Pd complexes would have raised a question on the involvement of benzene-Pd π-adducts in Pd-catalyzed benzene transformations. [7] The μ_3 -benzene coordination to molecular Pd clusters is unprecedented, while the potential ability of Pd clusters to bind benzene may be indicated by the Pd surface chemistry; that is, it has been proposed that adsorbed benzene on Pd surface adopts μ_3 - or μ_4 -bridging coordination modes.^[8] Our laboratory recently addressed the arene binding ability of Pd₃ clusters, [9] and disclosed that [2.2] paracyclophane, which is a distorted and intramolecularly π -stacking arene having much stronger coordinating ability than benzene, afforded the μ₃-arene Pd₃ cluster, through the redox-condensation of [Pd₂(CH₃CN)₆][BF₄]₂ and [Pd₂(dba)₃] in the presence of the cyclophane. In this case, however, a similar reaction using benzene instead of [2.2]paracyclophane did not afford any benzene-Pd₃ cluster (Scheme 2a).

Scheme 2. Examination of potential backside carbocyclic ligands for the formation of μ_3 -benzene Pd $_3$ clusters.

We sought to develop the backside ligand which enhances the arene binding ability of Pd₃ clusters. Several unsaturated carbocyclic compounds were tested as the additive for the reaction in Scheme 2a. Addition of a cyclic π -conjugated triene, 1,3,5-cycloheptatriene (CHT), which is known to behave as an excellent μ_3 -binder of a Pd₃ cluster, [9b,10] to the redox-condensation reaction mentioned above did not yield any benzene-Pd₃ complex (Scheme 2b). We then tested a larger neutral π -carbocyclic ligand, cyclooctatetraene (COT), as the potential backside ligand. [9b,11,12] Interestingly. addition of COT (1 equiv) to a mixture of [Pd₂(CH₃CN)₆]-[BF₄]₂, [Pd₂(dba)₃], and excess benzene gave the unprecedented μ_3 -benzene Pd₃ complex [Pd₃(μ_3 -benzene)(μ_3 -COT)- $(CH_3CN)_3[BF_4]_2$ (1-CH₃CN) in 83 % yield (Scheme 2c). The benzene-Pd3 complex 1-CH3CN remained intact in CD3NO2 solution for two days at ambient temperature, [13] even in the presence of CH₃CN (10 equiv). To our further surprise, the μ_3 benzene ligand remained intact in the presence of more strongly coordinating ligands such as pyridine, phosphines, or chloride. Thus, in each case, substitution of the equatorial CH₃CN ligands took place to afford [Pd₃(μ₃-benzene)(μ₃- $COT(L)_3[BF_4]_2$ (1-py, 1-PCy₃, 1-PPh₃) or $[Pd_3(\mu_3-benzene) (\mu_3\text{-COT})\text{Cl}_3$ [PPh₄] (1-Cl) (Scheme 3). It was confirmed that the benzene ligand in 1-PPh₃ or 1-py remained coordinated in CD₃NO₂ solution in the presence of excess free PPh₃ or pyridine (7 equiv) at ambient temperature. [14] In contrast, the known mono- and dinuclear palladium complexes of benzene

Scheme 3. The $\mu_3\text{-}benzene\ Pd_3$ clusters containing pyridine, phosphines, and chloride Ligands.

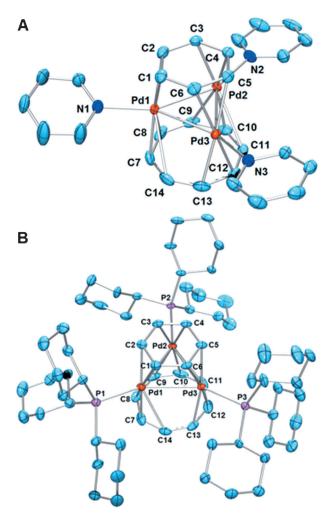
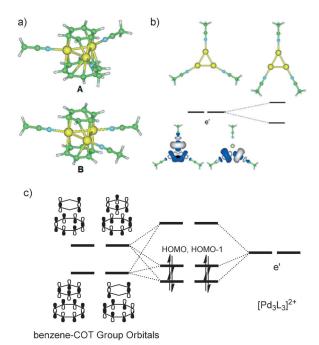


Figure 1. A) ORTEP of [Pd₃ (μ₃-C₆H₆) (μ₃-C₈H₈) (py)₃][BF₄]₂ (1-py) (ellipsoids set at 50% probability, BF₄ anions are omitted for clarity). Selected bond lengths [Å]: Pd1–Pd2 2.7331(3), Pd2–Pd3 2.7624(3), Pd3–Pd1 2.7519(3), Pd1–C1 2.197(3), Pd1–C2 2.202(3), Pd2–C3 2.208(3), Pd2–C4 2.202(3), Pd3–C5 2.214(3), Pd3–C6 2.203(3), C1–C2 1.420(5), C2–C3 1.428(4), C3–C4 1.421(4), C4–C5 1.426(5), C5–C6 1.416(4), C6–C1 1.435(4), C9–C10 1.420(4), C10–C11 1.406(5), C11–C12 1.405(5), C12–C13 1.426(5), C13–C14 1.403(4), C14–C7 1.421(6). B) ORTEP of [Pd₃ (μ₃-C₆H₆) (μ₃-C₈H₈) (PCy₃)₃][BF₄]₂ (1-PCy₃) (ellipsoids set at 30% probability, BF₄ anions and a solvent molecule are omitted for clarity). Selected bond lengths [Å]: Pd1–Pd2 2.8979(9), Pd2–Pd3 2.8784(8), Pd1–Pd3 2.9169(9), Pd1–C1 2.203(11), Pd1–C2 2.208(10), Pd2–C3 2.198(10), Pd2–C4 2.221(10), Pd3–C5 2.187(10), Pd3–C6 2.193(10).


immediately release the benzene ligand in the presence of these strongly coordinating ligands.^[5,6]

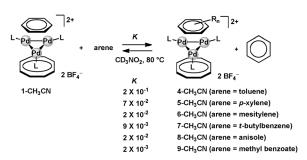
The structures of **1**-py and **1**-PCy₃ were determined by X-ray crystallographic analysis (Figure 1). The benzene ring capped the nearly equilateral Pd₃ triangle (Pd–Pd = 2.7331(3) Å, 2.7624(3) Å, 2.7519(3) Å in **1**-py; Pd–Pd = 2.8979(9) Å, 2.8784(8) Å, 2.9169(9) Å in **1**-PCy₃) through the μ_3 - η^2 : η^2 : η^2 -coordination mode. The C–C lengths (1.416(4)–1.435(4) Å) of the μ_3 -benzene ligand in **1**-py are slightly longer than those of free benzene, where a reduced bond length alternation was retained. [15,16] Such trend of C–C lengths in the μ_3 -benzene ligand is comparable to that

predicted for the μ_3 -benzene adsorbed on a Pd(111) surface. [8] The planar COT ligand supported the Pd₃ triangle at the backside through μ_3 - η^3 : η^3 : η^2 -coordination mode.

Apparently, COT might play important roles in the formation of μ_3 -benzene Pd₃ complex 1, as any μ_3 -benzene clusters were not obtained in the absence of COT, as mentioned above (Scheme 2). To gain insights into the stabilization effect of the backside COT ligand, we carried out DFT calculations^[17] on the model ions [Pd₃(benzene)- $(COT)(CH_3CN)_3|^{2+}$ (**A**) and $[Pd_3(benzene)_2(CH_3CN)_3|^{2+}$ (**B**), where the latter is a model of the expected but unobtainable product in Scheme 2a.[18] The calculation results supported that the backside coordination of COT stabilizes the benzene-Pd₃ cluster effectively; that is, the benzene dissociation energy for A $(D_{calc} = 105 \text{ kcal mol}^{-1})$ is larger than the first benzene dissociation energy for **B** ($D_{\text{calc}} = 88 \text{ kcal mol}^{-1}$). The replacement of one of the benzene ligands in B with COT to form A and free benzene was calculated to be exothermic $(\Delta H = -43 \text{ kcal mol}^{-1})$. The different electronic effects of the backside COT and benzene ligands exerting on [Pd₃L₃]²⁺ is reflected by the distinct geometries of the Pd3 core in A and **B**; that is, pseudo- $C_{3\nu}$ symmetry in **A** (a nearly equilateral Pd₃ triangle; Pd–Pd = 2.79 Å, 2.79 Å, 2.82 Å); $C_{2\nu}$ symmetry in **B** (a distorted isosceles Pd₃ triangle; Pd-Pd=2.77 Å, 2.77 Å, 2.68 Å; Figure 2 a,b).[19] MO analysis suggested that this geometrical difference of the Pd3 core is related to the difference of the π -electron number of the backside ligand: The highest occupied molecular orbital (HOMO) and the next-HOMO of A are essentially degenerated as a result of the MO interactions between the degenerated e' orbitals of

Figure 2. a) The optimized structures of $[Pd_3(benzene) (COT) L_3]^{2+}$ (**A**) and $[Pd_3(benzene)_2 L_3]^{2+}$ (**B**). b) The degenerate e' orbitals of the $C_{3\nu}$ -symmetric $Pd_3 L_3$ triangle, which are resolved by the Jahn–Teller distortion. c) A qualitative molecular orbital diagram between the ligand π -orbitals and the e' orbitals of $[Pd_3 L_3]^{2+}$ fragment in $[Pd_3$ -(benzene) (COT) $L_3]^{2+}$.

the pseudo- $C_{3\nu}$ symmetric $[Pd_3L_3]$ fragment $^{[5c,20]}$ and the inphase combination of the COT-benzene ligand orbitals (Figure 2c). When two 6π benzene ligands are the sandwich ligands, where the sum of the ligand π -electrons (12 e) are two less than that of the COT-benzene ligand system (14 e), these degenerated orbitals are each half-occupied, and hence the structure is subjected to Jahn–Teller distortion as found in **B**.


It is noted that COT may assist the Pd assembly not only with a thermodynamic cause but kinetic one in the formation of 1-CH₃CN (Scheme 2c). As the binding of benzene by $[Pd_2(CH_3CN)_6][BF_4]_2$ is thermodynamically unfavorable, $^{[6d]}$ and $[Pd_2(dba)_3]$ did not react with benzene, $[Pd_2(CH_3CN)_6]-[BF_4]_2$ might have reacted with COT to afford the dinuclear complex $\mathbf{2}$. We confirmed that the dinuclear adduct $\mathbf{2}$ did not react with benzene. Thus, a reactive half-sandwich Pd_3 -COT species $\mathbf{3}$ can be formed by addition of an Pd^0 moiety to $\mathbf{2}$ (Scheme 4). When compared with $[Pd_2^1]^{2+}$ in $[Pd_2$ -

Scheme 4. A plausible mechanism of COT-assisted benzene binding by a Pd_3 cluster.

 $(CH_3CN)_6][BF_4]_2$ or $[Pd^{II}_2]^{2+}$ in **2**, the low-valent $[Pd_3]^{2+}$ moiety in **3**, that is, formally +2/3 for each Pd, might have advantage in binding benzene and releasing CH_3CN ligands, in view of the weaker coordination ability of CH_3CN to Pd in lower oxidation states.

The μ_3 -Pd₃ cluster site supported by the backside COT ligand showed the arene-exchangeable property, while known μ_3 -benzene M₃ clusters (M=Ru, Os, Rh) did not show exchange of the μ_3 -benzene ligand with free arenes even at elevated temperature.^[15,16] The exchange of the μ_3 -benzene ligand in 1-CH₃CN with free arenes took place at 80 °C in CD₃NO₂ with [D₆]benzene, toluene, *p*-xylene, mesitylene, *tert*-butylbenzene, anisole, and methylbenzoate representing substrates (Scheme 5).^[22] The equilibrium constant $K_{\rm eq}$ for each substituted benzene was smaller than 1, indicating that steric effects contributed to the thermodynamic stability of μ_3 -arene Pd₃ complexes.

The backside-ligand modulation strategy can be applied to the naphthalene binding by a Pd_4 sheet cluster. Thus, the

Scheme 5. The μ_3 -arene exchange equilibrium of the Pd₃ clusters.

tetranuclear complex $[Pd_4(\mu_4\text{-naphthalene})(\mu_4\text{-COT})-(CH_3CN)_2][BF_4]_2$ (10-CH₃CN) was formed by the reaction of $[Pd_2(CH_3CN)_6][BF_4]_2$ and $Pd_2(dba)_3$ (1 equiv) in the presence of excess naphthalene and COT (1 equiv) in 62% yield (Scheme 6). [23] It is noted that any naphthalene Pd_4

Scheme 6. Naphthalene binding by a Pd₄ sheet cluster supported by the backside COT ligand.

complex was not obtained in the absence of COT. The PCy₃ complex **10**-PCy₃, PPh₃ complex **10**-PPh₃, or pyridine complex **10**-py was prepared by treatment of **10**-CH₃CN with 2 equiv of PCy₃, PPh₃, or pyridine, and the structure of **10**-PCy₃ was determined by X-ray crystallographic analysis (Figure 3). The naphthalene ligand facially capped the rhombic Pd₄ sheet through μ_4 - η^3 : η^2 : η^3 : η^2 -mode. To the best of our knowledge,

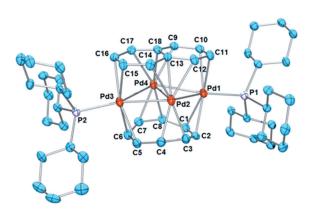


Figure 3. ORTEP of $[Pd_4(μ_4-C_{10}H_8)(μ_4-C_8H_8)(PCy_3)_2][BF_4]_2$ (10-PCy₃) (ellipsoids set at 30% probability, BF₄ anions are omitted for clarity). Selected bond lengths [Å]: Pd1–Pd2 2.8161(8), Pd2–Pd3 2.7990(8), Pd3–Pd4 2.8181(8), Pd4–Pd1 2.7906(7), Pd2–Pd4 2.8506(7).

the μ_4 -bridging coordination of naphthalene to a tetranuclear cluster was unprecedented for any metal elements. The COT ligand coordinated to the Pd₄ sheet through μ_4 - η^2 : η^2 : η^2 : η^2 :coordination mode.^[24] During the formation of μ_4 -naphthalene Pd₄ cluster **10**-CH₃CN, COT could assemble Pd on its face, but naphthalene may also work as the directing ligand for the Pd assembly. Indeed, **10**-CH₃CN was formed by the reaction of **1**-CH₃CN with naphthalene at 80 °C, where decomposition of a portion of **1**-CH₃CN might provide Pd⁰.

In summary, it has been shown that the backside COT ligand of the Pd_3 clusters significantly enhances the benzene binding ability at the Pd_3 cluster site, leading to the first μ_3 -

benzene– Pd_3 clusters that are stable in solution. Theoretical analysis supported the electronic stabilization effect of the backside COT ligand. The naphthalene binding by Pd_4 clusters was also attained by using a Pd_4 sheet bearing the backside COT ligand. These new aspects might represent a promising backside-ligand-modulation strategy to control the reactivity of metal clusters. Further reactivity study on the backside-ligand-modulated metal clusters are now ongoing in our laboratory.

Received: September 25, 2014 Revised: November 7, 2014 Published online: January 21, 2015

Keywords: benzene · clusters · ligand effects · naphthalene · palladium

- a) E. L. Muetterties, Science 1977, 196, 839; b) B. F. G. Johnson, M. Gallup, Y. V. Roberts, J. Mol. Catal. 1994, 86, 51; c) Catalysis by Di- and Polynuclear Metal Cluster Complexes (Eds.: R. D. Adams, F. A. Cotton), Wiley-VCH, New York, 1998; d) Metal Clusters in Chemistry (Eds.: P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH, Weinheim, 1999; e) H. Suzuki, Eur. J. Inorg. Chem. 2002, 1009; f) P. J. Dyson, Coord. Chem. Rev. 2004, 248, 2443; g) S. Hu, T. Shima, Z. Hou, Nature 2014, 512, 413.
- [2] a) R. S. Paton, J. M. Brown, Angew. Chem. Int. Ed. 2012, 51, 10448; Angew. Chem. 2012, 124, 10598; b) T. Murahashi, H. Kurosawa, Coord. Chem. Rev. 2002, 231, 207, and references therein.
- [3] As a rare system which can provide triply bridging coordination site of Pd clusters, [Pd₃(dppm)₃(CO)]²⁺ has been developed and its reactivity with RX or alkyne has been investigated: a) F. Lemaître, D. Lucas, K. Groison, P. Richard, Y. Mugnier, P. D. Harvey, J. Am. Chem. Soc. 2003, 125, 5511; b) R. J. Puddephatt, L. Manojlović-Muir, K. W. Muir, Polyhedron 1990, 9, 2767; c) L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, R. J. Puddephatt, J. Chem. Soc. Chem. Commun. 1983, 1336; For other systems: d) K. Y. Monakhov, C. Gourlaouen, P. Braunstein, Chem. Commun. 2012, 48, 8317; e) A. D. Burrows, D. M. P. Mingos, S. Menzer, R. Vilar, D. J. Williams, J. Chem. Soc. Dalton Trans. 1995, 2107.
- [4] R. H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, 6th ed., Wiley, Hoboken, **2014**.
- [5] All known benzene mono- or dinuclear Pd complexes are highly labile in a solution containing any competitive substrates with weakly coordinating ability, such as H₂O, Et₂O, or acetone. For non-chelating arene mononuclear Pd complexes, see: a) D. J. Mabbott, B. E. Mann, P. M. Maitlis, J. Chem. Soc. Dalton Trans. 1977, 294; b) T. A. Stromnova, M. V. Dayneko, A. V. Churakov, L. G. Kuz'mina, J. Campora, P. Palma, E. Carmona, Inorg. Chim. Acta 2006, 359, 1613; c) T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki, H. Kurosawa, Science 2006, 313, 1104; d) M. D. Walter, R. A. Moorhouse, S. A. Urbin, P. S. White, M. Brookhart, J. Am. Chem. Soc. 2009, 131, 9055.
- [6] For dinuclear Pd complexes bearing non-chelating μ-arenes, see: a) G. Allegra, G. T. Casagrande, A. Immirzi, L. Porri, G. Vitulli, J. Am. Chem. Soc. 1970, 92, 289; b) M. Gorlov, A. Fischer, L. Kloo, Inorg. Chim. Acta 2009, 362, 605; c) J. Åkerstedt, M. Gorlov, A. Fischer, L. Kloo, J. Organomet. Chem. 2010, 695, 1513; d) T. Murahashi, K. Takase, M. Oka, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 14908; e) T. Murahashi, S. Kimura, K. Takase, S. Ogoshi, K. Yamamoto, Chem. Commun. 2013, 49,

2515

- 4310; f) S. Lin, D. E. Herbert, A. Velian, M. W. Day, T. Agapie, *J. Am. Chem. Soc.* **2013**, *135*, 15830.
- [7] a) B. Biswas, M. Sugimoto, S. Sakaki, *Organometallics* 2000, 19, 3895; b) J. Guihaumé, E. Clot, O. Eisenstein, R. N. Perutz, *Dalton Trans.* 2010, 39, 10510; c) S. I. Gorelsky, D. Lapointe, K. Fagnou, *J. Am. Chem. Soc.* 2008, 130, 10848; d) S. I. Gorelsky, D. Lapointe, K. Fagnou, *J. Org. Chem.* 2012, 77, 658.
- [8] a) F. Mittendorfer, C. Thomazeau, P. Raybaud, H. Toulhoat, J. Phys. Chem. B 2003, 107, 12287; b) C. Morin, D. Simon, P. Sautet, J. Phys. Chem. B 2004, 108, 5653, and references therein.
- [9] a) T. Murahashi, M. Fujimoto, Y. Kawabata, R. Inoue, S. Ogoshi, H. Kurosawa, Angew. Chem. Int. Ed. 2007, 46, 5440; Angew. Chem. 2007, 119, 5536; b) T. Murahashi, K. Takase, K. Usui, S. Kimura, M. Fujimoto, T. Uemura, S. Ogoshi, K. Yamamoto, Dalton Trans. 2013, 42, 10626.
- [10] a) T. Murahashi, K. Usui, Y. Tachibana, S. Kimura, S. Ogoshi, Chem. Eur. J. 2012, 18, 8886; b) T. Murahashi, Y. Hashimoto, K. Chiyoda, M. Fujimoto, T. Uemura, R. Inoue, S. Ogoshi, H. Kurosawa, J. Am. Chem. Soc. 2008, 130, 8586.
- [11] T. Murahashi, S. Kimura, K. Takase, T. Uemura, S. Ogoshi, K. Yamamoto, Chem. Commun. 2014, 50, 820.
- [12] Previously, we observed that a $(\mu_3$ -[2.2]paracyclophane)-Pd₃- $(\mu_3$ -COT) complex was formed by treatment of a bis- μ_3 -[2.2]paracyclophane Pd₃ complex with excess COT.^[9a] This implied the relatively stable arene-Pd₃-COT structure compared to the bis(arene) Pd₃ structure.
- [13] A 1 H NMR spectra of **1**-CH₃CN in CD₃NO₂ showed two sharp singlet signals for benzene protons (δ = 5.43 ppm) and COT protons (δ = 4.79 ppm) in high-field region compared to that of free benzene or COT. The 13 C NMR signals for the benzene and COT ligands also appeared at high-field region (δ = 73 ppm for C₆H₆; δ = 82 ppm for C₈H₈).
- [14] In the case of PCy₃, gradual decomposition of **1-**PCy₃ was observed. When less than 3 equiv of PPh₃ was added to the solution of **1-**CH₃CN, gradual decomposition of the μ_3 -benzene-Pd₃ framework was observed. This result may reflect the

- unstable nature of $[Pd_3(benzene)(COT)(PPh_3)_2L]^{2+}$ or $[Pd_3-(benzene)(COT)(PPh_3)L_2]^{2+}$.
- [15] For a review of μ₃-arene clusters, see: D. Braga, P. J. Dyson, F. Grepioni, B. F. G. Johnson, *Chem. Rev.* 1994, 94, 1585.
- [16] For selected examples of μ₃-arene clusters, see: a) H. Wadepohl, M. J. Calhorda, M. Herrmann, C. Jost, P. E. M. Lopes, H. Pritzkow, *Organometallics* 1996, 15, 5622; b) A. Inagaki, Y. Takaya, T. Takemori, H. Suzuki, M. Tanaka, M. Haga, J. Am. Chem. Soc. 1997, 119, 625; c) J. P.-K. Lau, Z.-Y. Lin, W.-T. Wong, Angew. Chem. Int. Ed. 2003, 42, 1935; Angew. Chem. 2003, 115, 1979.
- [17] DFT calculations were performed at B3LYP-D level of theory.
- [18] The composition of the model ion B containing three CH₃CN ligands is reasonable, in light of the composition of a related complex [Pd₃(μ₃-[2.2]paracyclophane)₂(CH₃CN)₃][B(Ar^F)₄]₂. [9a]
- [19] An isosceles triangle geometry of $[Pd_3L_3]^{2+}$ core was experimentally identified in the structures of related bis(cycloheptatriene) M_3 complexes $[Pd_3\{\mu_3\text{-}C_7H_7(tBu)\}_2(CH_3CN)_3][BF_4]_2$ and $[Pd_2Pt(\mu_3\text{-}CHT)_2(CH_3CN)_3][BF_4]_2$. [10]
- [20] The HOMO and HOMO-1 (e' orbitals) of a neutral D_{3h}-symmetric [Pd₃L₃] fragment are degenerate: M. T. Reetz, E. Bohres, R. Goddard, M. C. Holthausen, W. Thiel, *Chem. Eur. J.* 1999. 5, 2101.
- [21] T. Murahashi, N. Kato, S. Ogoshi, H. Kurosawa, J. Organomet. Chem. 2008, 693, 894.
- [22] The (μ₃-substituted benzene)-Pd₃ complexes were prepared according to the reaction shown in Scheme 2c, where each substituted arene was used instead of benzene. See the Supporting Information.
- [23] The 13 C NMR analysis in CD₃NO₂ showed the upfield-shifted signals for all naphthalene carbons ($\delta = 93$ ppm, 85 ppm, 84 ppm) and COT carbons ($\delta = 68$ ppm), indicating the structure found in the crystalline state was retained in solution.
- [24] a) T. Murahashi, R. Inoue, K. Usui, S. Ogoshi, J. Am. Chem. Soc. 2009, 131, 9888; b) T. Murahashi, N. Kato, T. Uemura, H. Kurosawa, Angew. Chem. Int. Ed. 2007, 46, 3509; Angew. Chem. 2007, 119, 3579.